Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 343: 199355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490580

RESUMO

Influenza viruses are notorious for their capacity to evade host immunity. Not only can they evade recognition by virus-neutralizing antibodies, there is also evidence that they accumulate mutations in epitopes recognized by virus-specific CD8+T cells. In addition, we have shown previously that human influenza A viruses were less well recognized than avian influenza viruses by CD8+T cells directed to the highly conserved, HLA-A*02:01 restricted M158-66 epitope located in the Matrix 1 (M1) protein. Amino acid differences at residues outside the epitope were responsible for the differential recognition, and it was hypothesized that this reflected immune adaptation of human influenza viruses to selective pressure exerted by M158-66-specific CD8+T cells in the human population. In the present study, we tested this hypothesis and investigated if selective pressure exerted by M158-66 epitope-specific CD8+T cells could drive mutations at the extra-epitopic residues in vitro. To this end, isogenic influenza A viruses with the M1 gene of a human or an avian influenza virus were serially passaged in human lung epithelial A549 cells that transgenically express the HLA-A*02:01 molecule or not, in the presence or absence of M158-66 epitope-specific CD8+T cells. Especially in the virus with the M1 gene of an avian influenza virus, variants emerged with mutations at the extra-epitopic residues associated with reduced recognition by M158-66-specific T cells as detected by Next Generation Sequencing. Although the emergence of these variants was observed in the absence of selective pressure exerted by M158-66 epitope-specific CD8+T cells, their proportion was much larger in the presence of this selective pressure.


Assuntos
Fluprednisolona/análogos & derivados , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Substituição de Aminoácidos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Vírus da Influenza A/genética , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo
2.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896776

RESUMO

Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas , Lactente , Criança , Feminino , Gravidez , Humanos , Idoso , Reinfecção , Vírus Sinciciais Respiratórios , Imunidade
3.
iScience ; 26(4): 106309, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968089

RESUMO

Influenza viruses (IVs) cause substantial global morbidity and mortality. Given the limited range of licensed antiviral drugs and their reduced efficacy due to resistance mutations, repurposing FDA-approved kinase inhibitors as fast-tracked host-targeted antivirals is an attractive strategy. We identified six FDA-approved non-receptor tyrosine kinase-inhibitors (NRTKIs) as potent inhibitors of viral replication of pandemic and seasonal IVs in vitro. We validated their efficacy in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors and assessed their effect(s) on host responses. Their overlapping targets suggest crosstalk between Abl, EGFR, and PDGFR pathways during IAV infection. Our data and established safety profiles of these NRTKIs provide compelling evidence for further clinical investigations and repurposing as host-targeted influenza antivirals. Moreover, these NRTKIs have broad-spectrum antiviral potential given that their kinase/pathway targets are critical for the replication of many viruses.

4.
Viruses ; 14(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146864

RESUMO

Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Humanos , Influenza Humana/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Receptores Proteína Tirosina Quinases , Estados Unidos , United States Food and Drug Administration , Replicação Viral , Quinases raf/metabolismo
5.
Viruses ; 11(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791550

RESUMO

Influenza A viruses (IAVs) are a major cause of respiratory illness and are responsible for yearly epidemics associated with more than 500,000 annual deaths globally. Novel IAVs may cause pandemic outbreaks and zoonotic infections with, for example, highly pathogenic avian influenza virus (HPAIV) of the H5N1 and H7N9 subtypes, which pose a threat to public health. Treatment options are limited and emergence of strains resistant to antiviral drugs jeopardize this even further. Like all viruses, IAVs depend on host factors for every step of the virus replication cycle. Host kinases link multiple signaling pathways in respond to a myriad of stimuli, including viral infections. Their regulation of multiple response networks has justified actively targeting cellular kinases for anti-cancer therapies and immune modulators for decades. There is a growing volume of research highlighting the significant role of cellular kinases in regulating IAV infections. Their functional role is illustrated by the required phosphorylation of several IAV proteins necessary for replication and/or evasion/suppression of the innate immune response. Identified in the majority of host factor screens, functional studies further support the important role of kinases and their potential as host restriction factors. PKC, ERK, PI3K and FAK, to name a few, are kinases that regulate viral entry and replication. Additionally, kinases such as IKK, JNK and p38 MAPK are essential in mediating viral sensor signaling cascades that regulate expression of antiviral chemokines and cytokines. The feasibility of targeting kinases is steadily moving from bench to clinic and already-approved cancer drugs could potentially be repurposed for treatments of severe IAV infections. In this review, we will focus on the contribution of cellular kinases to IAV infections and their value as potential therapeutic targets.


Assuntos
Interações Hospedeiro-Patógeno , Influenza Humana/enzimologia , Fosfotransferases/metabolismo , Internalização do Vírus , Antivirais/uso terapêutico , Linhagem Celular , Humanos , Quinase I-kappa B/metabolismo , Imunidade Inata , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Blood ; 131(5): 533-545, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233822

RESUMO

Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Infecções por Mycobacterium/prevenção & controle , Substâncias Protetoras , Receptores de Interferon/genética , Animais , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas/métodos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium avium , Substâncias Protetoras/metabolismo , Substâncias Protetoras/uso terapêutico , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...